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1.0 INTRODUCTION AND BACKGROUND

,• 1.1 INTRODUCTION

'4This paper is intended as a primer on image compression techniques

as they apply to compressing Synthetic Aperture Radar (SAR) imagery.

Particular attention will be focused on two techniques which are

thought to be particularly suitable to this particular application

because of their simplicity and speed, namely Vector Quantilzation (VQ)

and Block Truncation Coding (BTC). More well-known techniques such as

Differential Pulse Code Modulation (DPCM) and Discrete Cosine Trans-

form (OCT) will also be discussed. Recommendations for experiments on

SAR imagery are made. 1

1.2 UNIQUE ASPECTS OF SAR

SAR imagery differs from conventional visual band photographic or

electro-optical imagery in two significant respects: first by having a

large dynamic range (as great as 96 dB), and second, by the presence

of speckle noise, the sort of noise seen in optical holography,(Ref'li"

Since SAR images are produced by coherent processing of

scattering-type signal reflections, speckle effects are produced by

what has been described as intra-pixel Interferometry: the coherent

signal Interaction between separate scatterers within a aIngle pixel.

This speckle phenomenon is always present and varies from pulse to

pulse for a given pixel. Speckle contains information pertaining to

the size and location of terrain scatterers and perhaps to sub-pixel

textural information (Tomtyasu [8]), but for most common SAR Imaging

applications this information is of no concern, and in fact can be

described as signal-dependent (multiplicative) noise. In holography

this degradation has been estimated as causing a reduction in resolu-

tion such that an aperture 2.6 times as large as that required for a

speckle-free image would be necessary for equivalent resolution

(Kozma, [2]). Speckle noise likely contributes to a reduction in
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adjacent cell correlation according to a Rayleigh model described by
Wu [3]. Spatial lowpass filtering can be used to smooth the speckle
noise, but edge sharpness Is reduced by such filtering. Multiple-look
averaging will improve the image quality without blurring edges, but
at the expense of requiring collection of the additional information.
Numerous approaches to the speckle-reduction problem have been stud-
ied. Lim and Nawab [4] observed that grey scale modification could be
used to improve the image. This is of note since grey scale modifica-
tion represents a dynamic range adjustment (DRA); thus it may be
expected that a logarithmic type of DRA will decrease the speckle
effect. The same authors found some improvement using homomorphic
filtering such as described by Oppenheim [14]. A homomorphic Wiener
filter was found effective by Jamn and Christensen [6]. Tur, Chin,
and Goodman [7] have observed that the multiplicative noise model is
not always valid for speckle, specifically, when the object imaged
contains fine details which cannot be resolved by the imaging system.
Lee [9] has proposed a filtering approach called Sigma Filtering, in
which each pixel is replaced by an average of those neighboring pixels
which have their amplitude levels within two standard deviations of
that pixel. Lee's approach minimizes degradation of fine detail, as
does the recent approach of CrImmons called Geometric Filtering [10],
[11]. Geometric Filtering Is an iterative non-linear geometric ap-
proach using the convex hull description of a pixel set. Crimmons
defines a Speckle Index as the ratio of deviation to mean of a block
of pixels, and demonstrates superior reduction of speckle so defined
using geometric filtering as compared with look averaging.

Speckle reduction is considered relevant to image compression
becauset (1) in the case of the Discrete Cosine Transform (DCT),
speckle very likely causes the algorithm to assign bits to transform
domain regions (such as the high spatial frequencies) which typically
should receive very few bits, thus forcing an unwanted reallocation of
bits; (2) in the case of Block Truncation Coding (BTC), the algorithm
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codes and transmits block standard deviation, and since speckle repre-
sents a non information-bearing component (for typicil exploitation
applications) which contributes to the block vwr½,ce, It may well
contribute to the coding of unnecessary bits for the block variance.
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2.0 COMPRESSION AND CODING

General discussions on compression are contained in References

(12-15]. Brief discussions on Remapping and Log compression are given

below, followed by descriptions of Differential Pulse Code Modulation

(DPCM), Transform Domain approaches such as the Discrete Cosine Trans-

form (OCT), and finally by discussions of Block Truncation Coding

(BTC) and Vector Quantization (VQ).

2.L REMAPPING

Remapping techniques are those which can be implemented by the use
of simple lookup tables which map one image pixel amplitude Into
another amplituAe on the basis of input amplitude. Strictly speaking,

remapping may or may not result in a compression of the number of bits

per pixel, but may simply expand or contract the r4nge of output value
for a corresponding input range In order to iiprove viewing or to

match the characteristics of a display device (Matthews, et al [16]).
This Is sometimes performed to expand the contrast over a desired

range of amplitudes where desired features are felt to lie, and is

then referred to as Dynamic Range Adjustment (DRA). If the output

range is re-quantized at fewer bits per pixel, a data compression
results. Lipes [171 reports on compression of SAR using various

quantizations. The quantizing is optimally done so as to result in
minimum average error in the quantized signal by apportioning the
quantizing ranges as described by Max [18].

2.2 LOG COMPRESSION

. A particular remapping, the log transform, has been recommended
for compression of SAR imagery by Crowe, et al [19]. An actual exam-

ple of such a remapping used to achieve compression Is the log com-
pression presently In use in the ASARS, in which a 96 dB dynamic range
has been achieved by incorporating a scaling parameter derived from
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the system AGC into the log compression. Informal experiments by the
ASARS contractor have resulted in pleasing results from using a simple
square-root compression having only 48 dB of dynamic range.

2.3 SPATIAL-DOMAIN ENCODING

Differential Pulse Code Modulation (DPCM) is a compression tech-
nique that has been subject to much examination in the literature, and
thus will only be dealt with briefly here. Lynch [12] and Oppenheim
[14] provide good general descriptions. DPCM algorithms achieve com-
pression by employing an embellishment on what is called "delta modu-
lation", where only a one-bit estimate (slope up or slope down esti-
mate of) the difference between adjacent pixels rather than their
absolute value is transmitted. In the case of DPCM, a predictor is
employed to make an estimate of an adjacent pixel amplitude based on
the value of one or more of its neighbors. Identical predictor equa-
tions are employed at both the sending and receiving ends, thus making
it possible to store or transmit only the difference between the
actual and predicted values. Considering a spat 4al matrix of pixels
with a single pixel designated as x(m,n), a typical linear predictor
equation might have the form:

x(m, n) - +0.75*x(m, n - 1) + 0.75*x(m -1, n) - O.5*x(m - 1, n - 1)

If all three adjacent pixels (left, above, and above-left) were equal,
the predicted value would be equal to that value, whereas if the
"above-left" pixel were low in amplitude, the predicted value would be
correspondingly higher since the three pixels would appear to define a
plane sloping upwards toward the pixel to be predicted. Although the
coefficient terms above add to unity, this need not be the case in
general. Calculation of predictor coefficients based on the statis-
tics of the imagery will result in appropriate coefficients for that
imagery. Subtracting the predicted value from the actual pixel value
at the point of the original image leaves an error term which can be

6



ERIM

quantized into fewer bits than the original pixels and then transmit-

ted or stored. Practical DPCM systems typically achieve average com-

pressed quantization levels of between 4 and 5 bits per pixel. The

design of the quantizer lookup tables should be done according to the

nature of the type of imagery to be transmitted. The error signal of

SAR will most likely have a different probability distribution than

the corresponding error signal for photographic or IR imagery. An
optimum quantizer will have its quantization ranges apportioned so as

to minimize the overall error probability on the average; different

Quantizer Tables should thus be employed according to the class of
imagery. DPCM systems designed in two dimensions such as the above

equation are often described as 2D-DPCM to distinguish them from

single dimension or temporal schemes such as used with time waveforms

like speech. Adaptive DPCM (AOPCM) applies to systems which adapt the
predictor or the quantizer to the statistics of the input image on a

block basis. Practical DPCM systems typically achieve average com-

pressed quantized levels of between 4 and 5 bits per pixel, although

Werness [20] has described a dual rate predictor (ADPCM) which

achieves coding rates ranging between 1.3 and 2.3 bits per pixel for

SAR data.

2.4 BLOCK CODING ;A

Block coding of images includes those coding or compression tech-

niques which operate on blocks of data samples, typically square In

the case of imagery. Such algorithms include the transform techniques
such as DCT, and quantization techniques such as Block Truncation
Coding (BTC), and Vector Quantizing (VQ). These algorithms typically

process each block differently according to the local statistics of
each block, so a common concern among them is the occurrence of visi-
ble block boundaries in some processing situations and at larger block

sizes (say 16x16 blocks as opposed to 4x4 blocks). Habibi [21] and

Gonsalves [22] provide comparisons of block techniques with DPCM.

7



nR-IM

2.4.1 Transform-Domain Techniques

Transform domain techniques (Wintz, [23]) In general achieve their

effectiveness by taking advantage of the fact that the information

contained in some of the transformed values of the image Is greater

than in others. That is, transforming a spatial image using a common

transformation such as the Discrete Fourier Transform, one obtains an

orthogonal or uncorrelated set of coefficient values in the spatial

frequency domain; the information contained in the high spatial fre-

quency coefficients has been shown to be of less value than those of

lower frequency. It is thus possible to either dispose of the less

important coefficients, or assign fewer bits to them in an encoding

scheme prior to storage or transmission. A number of transforms have

been investigated over the years, and It has been shown that the opti-

mal orthogonal transform from a coefficient truncation mean-square

error (MSE) sense is the Karhunen-Loeve (K-L) transform. However, no

efficient algorithm exists for computing the K-L transform. Given

this fact, other transforms which do have 'fast" algorithms have been

investigated, Including the Haar, Slant, Walsh, and the DFT/FFT. It

is generally concluded that, for Markov sources, the OCT gives the MSE

performance closest to the optimum K-L results, as described by Ahmed,

et al [24]. Gloutsos and Werness [25] have found that In the case of

SAR imagery, the Sine transform rather than the Cosine transform Is

optimum. It should be noted that the MSE measure of performance is

commonly used because it is objective and can be easily be measured;

however, it is a pixel-oriented measure, and may not be truly indica-

tive of the actual spatial feature distortion. Werness [15] has pro-

posed a set of metrics for evaluating the performance of compression

schemes that take into account the unique nature of SAR Imagery; the

metrics quantify two types of noise common in predictive systems such

as ADPCM: slope overload and large quantizer step size noise.
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As compared to simple algorithms such as the BTC or simple spatial

VQ, the OCT is computationally intensive, but can result in compres-

sion rates below 2 bits/pixel with little visual degradation. The

heart of the scheme is a systematic apportionment of quantization bits

across the set of transform coefficients, with those coefficients in

the "upper left" of the coefficient matrix, corresponding to those

components closer to zero spatial frequency, being assigned the

greater number of bits. The highest spatial frequency components are
often discarded or assigned only one bit. Each coefficient is then

quantized according to the number of assigned bits, with quantization
lookup tables available for each bit-assignment case. The quantizer
tables must be optimized so as to minimize the quantization error,
thus taking into account the probability distribution of the transform
coefficients. In order to achieve consistent performance, It then
becomes necessary to engage in normalization of the input blocks prior
to performing the 2D transforms from the spatial domain. It is typi-
cal to do the transforms using blocks on the order of 16x16. In addi-
tion to the computation Intensity of the two dimensional cosine trans-
form, the normalization calculations and selection of bit assignment
rules add significantly to the complexity of OCT types of transforms.
Chen and Smith [26] describe a practical OCT implementation. Re-
cently, a two dimensional Fast Cosine Transform (FCT) has been intro-
duced by Lee (27] as a means of improving on the computational effi-
ciency of the OCT, with refinements described by Haque (28].

2.4.2 Block Truncation Codina (BTC)

A recently developed spatial domain compression technique Is Block

Truncation Coding (BTC). References [29J-[39] describe BTC and its
application to visual-domain imagery. The application to Seasat SAR
imagery Is described by Frost in (39J. Figure 2-1 illustrates the BTC
procedure. The BTC algorithm uses a two-level (one-bit) non-
parametric quantizer which adapts to preserve the first two local
moments of the image. Non-overlapping blocks (typically 4 x 4 or

9
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FIGURE 2-1. BTC TECHNIQUE

Suppose a 4 x 4 image block consists of the following pixel
amplitudes:

116 120 53 49
36 199 255 249
17 0 10 170
30 3 6 249

The block mean and standard deviation are thus:

7 mean - 97.63
a n std. dev. a 93.79

with
k - lb a number of elAments in the block

Using the block mean as the threshold value,

q - 7 w the number of pixels above the threshold

yields: a - 14 (to the nearest integer)

b - 203

for the "low" and "high" values respectively.

The bit plane is then

1100
0111
0 0 0 1
0001

resulting in a reconstructed block of

203 203 14 14
14 203 203 203
14 14 14 203
14 14 14 203

which preserves the block mean and standard deviation.
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8 x 8 pixels) are replaced with pixels quantized to one of two levels

so that the mean and variance of the block are maintained. The two

levels for each block represent local "bright" and "dark". A bit

plane of one's and zero's is transmitted,representing each pixel as
either high (bright) or low (dark), corresponding to pixels above or

below the block means. Also transmitted are quantized values of the

blockmean (corresponding to the average pixel brightness) and block

standard deviation (corresponding to the pixel contrast within the
block). The receiver or decoder reconstructs an approximation to the
original block by replacing each pixel having a "high" value repre-
sented by a "one" in the bit plane by a value equal to

b w + elJT q7/

and points represented by a "zero" in the bit plane by

a au Trq/(k - q)

where 7 - block mean
a - block standard deviation
k a number of points in block
q - number of points above the block mean

Thus e~ch point above the threshold (the original block mean) is re-
placed by value equal to Ob", and those below the mean by a value

equal to "a". The process is illustrated In Figure 2-1. The threshold
is commonly chosen a priori to be the block mean, although other more

complex calculated thresholds have been proposed in order to preserve
higher-order moments. As seen in Figure 2-1, the compressed block
consists of pixels having a value above the original block mean (the
204-values) and pixels below the mean (the 17-values). The block mean
and variance of this new block are identical to those of the original
block. The transformation is repeated for every (non-overlapping)
block over the image, with new high and low values calculated for each

11



block. The average value (or average brightness) and variance (corre-

sponding to the contrast between pixels) are thus adaptive over the

image, adjusting to fit the image at each 4 x 4 area, for example.

The required number of bits to be transmitted Is simply

m2 + N(mean) + NSTOEV,

where m2 - block size (4 x 4 a 16 for a square 4 x 4 block) and NMean,

NSTDEV are the number of bits used to encode the block mean and block

standard deviation. If the mean and standard deviation were each

represented by 8 bits, then a 4 x 4 block would require 16 bits for

the 1-bit mask and 2 x 8 a 16 bits for the mean and standard devia-

tion, giving a total of 32 bits for 16 pixels, or 2.0 bits per pixel.

If 8 x 8 blocks were similarly encoded, the result would be 80 bits

for 64 pixels, or 1.25 bits per pixel. The performance is seen to be

asymptotic to 1 bit per pixel with Increasing block size. The general

formula for the number of bits per pixel is simplyt

bpp a 1 + (NM + NV)/(Block Size)

where bpp x bits/pixel

NM w Number of bits used to encode the block mean

NV a Number of bits used to encode the block standard

deviation.

12



3.0 BTC RESULTS

The results of Block Truncation Coding of SAR imagery are shown in

Figures 3-1 through 3-4. These figures were obtained photographically

using a DeAnza image processing softcopy (CRT) display having 512 x

512 display resolution, with 256 levels of intensity displayed. For

this Investigation,an original STAR-i SAR image of Belle Isle and

Belle Isle Bridge in the Detroit River was used (Figure 3-1). The

digital image, having 15 bits/pixel, Is first mapped to 8 bits/pixel

using a hin/log dynamic range adjustment (ORA) as is typical for SAR

data display. No transmission error effects are included. The mean

and standard deviation parameters are quantized at 8 bits (per block)

each. The results of the 4 x 4 BTC (2.0 bits per pixel), 8 x 8 BTC

(1.25 bits/pixel) and 16 x 16 BTC (1.06 bits/pixel) are presented for

the same SAR scene in Figures 3-2 through 3-4 respectively. The BTC4

results are clearly superior to those of BTC8 and BTC16; the marginal

improvement In compression available by increasing block size is small

as BTC asymptotically approaches 1 bit per pixel. As the BTC block

size increases, the underlying blocks can be seen in the Image, par-

ticularly for the 16 x 16 BTC. However, flicker comparisons between

BTC4 and the original Images reveal almost no differences: some bright

pixels are reduced slightly In amplitude, while some darker pixels

Increase slightly, but shapes and edges are preserved quite well. A 4

x 4 block size Is so small that it is virtually unnoticeable to an

observer. Thus we conclude that SAR data compression up to 2 bits/

pixel can be achieved using BTC with 4 x 4 blocks without significant

loss of image quality.

BTC has sometimes been considered as a special case of Vector

Quantizing, discussed below. One significant difference lies in the

non-parametric or adaptive nature of BTC; the algorithm adjusts to the

statistics of each Individual scene on a block by block basis.
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87-11355

87.1045-1i

FIGURE 3.1. FULL RESOLUTION SAR IMAGE
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87.1 1356

87-10459-4

FIGURE 3-2. 4 X 4 BTO IMAGE
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87-11357

P~fURE 3.3. 8 X SBTC IMAGE
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PlOURE 3.4. lox 16 TC IMAGE
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3.1 COMPARISON OF 8TC WITH DPCM

In comparison with adaptive DPCM (ADPCM), probably the most preva-

lent example of a spatial-domain compression technique, a number of

aspects of BTC are noteworthy. BTC is inherently block adaptive In

that all the coding parameters have the ability to change at every

block. DPCM Is computationally more complex than BTCM a three-step

ADPCM predictor basr tn pixels to the left, above, and at a 450 angle

would require three multiplications for every pixel for the prediction

process alone. The ADPCM coder loop Is more complex than the BTC

coding process, requiring an ADPCM decoder in the predictor feedback

loop as the cost required to achieve somewhat higher expected quality

than with BTC.

Channel errors are observed in the reconstructed image differently

In BTC and DPCM. In OPCM the channel errors appear as streaks in the

image. If the DPCM predictor is not adaptive or new Initial condi-
tions are not sent after a few rows of the image, then these streaks

will propagate throughout the entire image., The amount of propagation

Is determined by the type of predictor used. If a Moving Average

(MA) predictor is used, there will be no streaking. For BTC the

errors appear as bad blocks of data (small and localized in the case

of 4 x 4 pixel blocks).

Reference (31] describes a DPCM algorithm capable of compressing

photographic images from 11 to 3 bits/pixel with indiscernible (sub-

jective) visual degradation. A conservative BTC approach (4 x 4, with

11 bits per input pixel and 11 bit mean and standard deviation) would

achieve 2.375 bits/pixel, by comparison. An interesting combination
of DPCM and BTC has been suggested in Reference [32], In which the

DPCM difference signal is quantized to one bit using BTC. A photo-

graphic Image was quantized to 1.18 bits/pixel using this hybrid tech-

nique, compared to a 1.53 bits/pixel rate for BTC alone for the same

image.
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3.2 VECTOR QUANTIZING

Vector Quantizing (VQ) as first applied to temporal signals is
described by Gray [40], and by Gersho [41] as applied to imagery. An
appreciation for the possibilities inherent in VQ can be gained by
recalling a classical result from communication theory, namely that
the error perfcrmance achieved in encoding a sequence of data samples
may he decreased to an arbitrarily small level by coding the data in
increasingly large blocks of samples. This result is known as the
Block Orthogonal Coding case. The application of this principle to
data compression can be appreciated by considering that the same tech-
nique of block data encoding could be applied, not to reduce error
with increasing block length, but holding the error rate constant with
increasing block length, and compensating for the potentially Improved
error performance by allowing quantizing noise to increase by coarser
quantizing. The net would be to encode with fewer bits, thus achiev-
ing compression. In general then, encoding the samples in blocks or
vectors rather than individually (as scaler amplitudes) can be used
either to achieve compression or to reduce error rate. Reducing the
average number of bits per encoded sample while encoding blocks is
called Vector Quantization.

Figure 3-5 Illustrates the basic principle of VQ with a very sim-
ple one-dimensional case encoding signal samples by pairs. Figure 3-6
extends the technique to the two-dimensional image case. The key step
of the process is the selection of the optimum mapping from an input
sample block or vector to one of a limited set of representative code-
vectors. The set of possible codevectors must be chosen based on the
probability densities of the input blocks so as to minimize the over-
all average error or image distortion. The most popular means of
determining this codebook mapping is by employing an optimization
algorithm known as the LBG algorithm, in reference to the three au-
thors (Linde, Buzo, and Gray, [42]) who developed it. A codebook
produced by such a process for imagery data is represented by a set of

24
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representative pixel patches as shown in Figure 3-7. In this example

case, the 64 representative pixel blocks are arrayed In an 8 x 8 ma-

trix (the matrix presentation is arbitrary, only the number of unique

blocks is significant). Any 3 x 3 (in this case) input data block is

replaced by the most appropriate representative block from the code-

book matrix. Thus as one would expect, the codebook consists of

blocks or image patches having various intensities and gradients, with

some of the blocks having typical edge patterns.

Compression results of 0.66 bit/pixel can be achieved using 3 x 3

Input blocks with a library of 64 codevector blocks. Such VQ tech-

niques are found to encode visual imagery with very little perceptual

degradation except at sharp edges, where a staircase effect is found.

This latter distortion has been attacked by using a Classified VQ

(CVQ) to first classify the block as to type in order to separate out

the blocks having edges and encode them from a special code table for

edge blocks. Ramamurthi and Gersho describe CVQ in [43). A number of
further extensions to VQ are given by Nasrabadi in (44], including
predictor techniques and vector coding of transform coefficients.
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4.0 RECOMMENDATIONS

No results of the application of VQ to SAR imagery are available

at present. Considering the nature of SAR imagery as described ear-

lier, it may Le possible suggest areas for investigation as to the

best means to employ VQ with SAR imagery:

0 To what degree does the edge fidelity criterion apply to SAR

imagery.

0 The effect that Speckle-reduction algorithms would have on

simplifying codebook selection operations.

* The Inherent degradation of target patterns which would be

incurred using VQ (jagged edges for example) may affect image

utility different for human Image Analysts (IAs) than it would

affect current generation Automatic Target Recognition (ATR)

algorithms; the relative effects of such degradations should

be investigated by a comparative experimental effort.

It is thus recommended that:

0 A codebook optimization algorithm be implemented (such as the

LBG algorithm) and run against representative SAR imagery

containing tactical targets of interest.

0 In house trained IA's be employed to assess the degradation of

target signatures for simple VQ (as opposed to Classified VQ,
or CVQ). This assessment would include a recommendation as to

whether a more complex multistage VQ approach such as CVQ be

employed to retain edge fidelity.

0 The utility of speckle reduction for pre-VQ processing or

post-VQ edge smoothing should be investigated.

0 A modest performance single stage VQ having small blocks

(3 x 3 recommended) be used for baseline, with codebook sizes

of 64 and 256 be employed.
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